#### NIH fMRI Summer course

## Computational modeling and fMRI

(2<sup>nd</sup> order statistics, across-trial variability and trajectory-based processing)

## Biyu Jade He, Ph.D.

National Institute of Neurological Disorders and Stroke

National Institutes of Health

August 6<sup>th</sup>, 2014

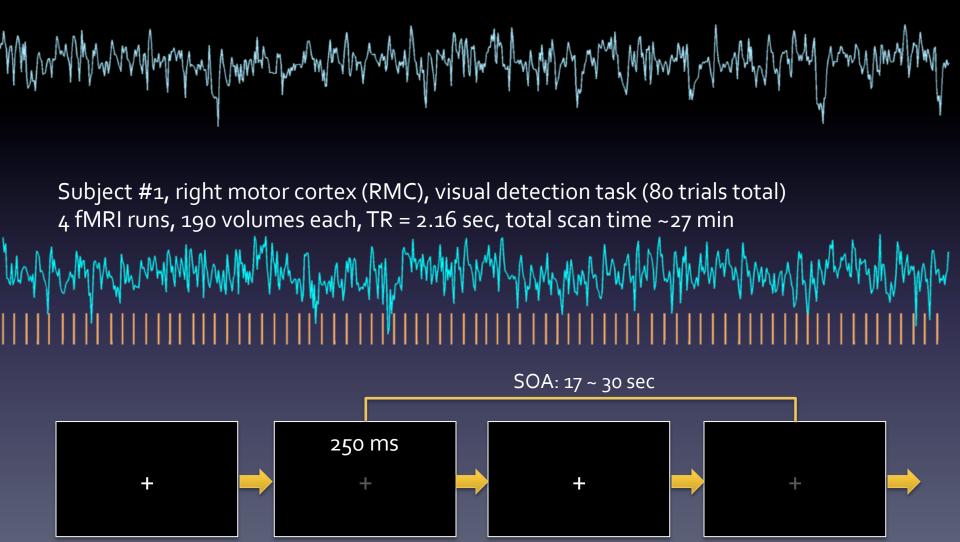


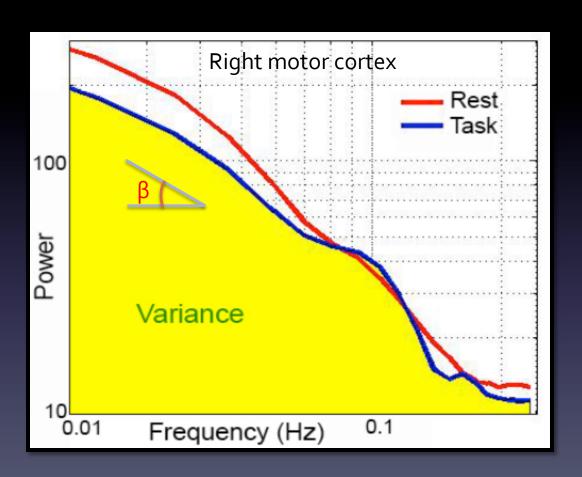


## Talk Outline

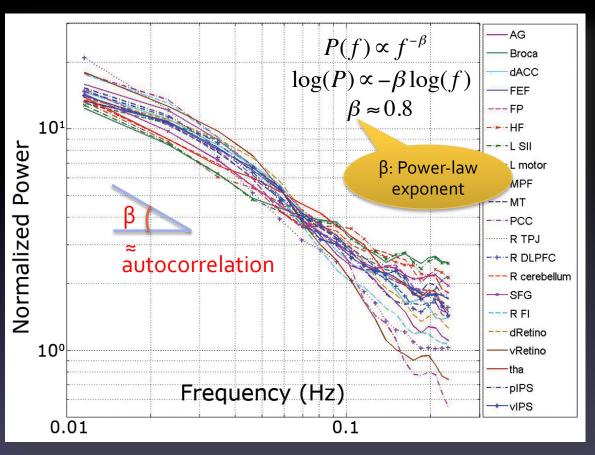
- 2<sup>nd</sup>-order statistics of fMRI signal
  - 1<sup>st</sup> order: mean
  - 2<sup>nd</sup> order: variance; power spectrum; auto-correlation
- The relation between ongoing and evoked activity
  - How to assess
  - An example of overwhelming negative interaction in fMRI
- Trajectory-based processing
  - A more parsimonious and realistic model
- Similar observations in electrophysiology

Subject #1, right motor cortex (RMC), resting-state 4 fMRI runs, 190 volumes each, TR = 2.16 sec, total scan time ~27 min



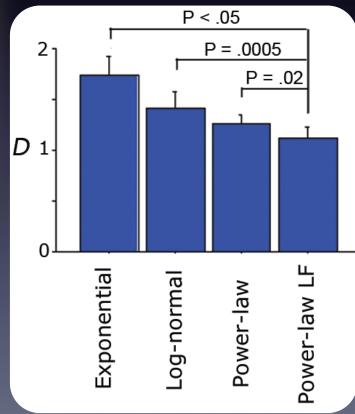


## fMRI signal temporal power spectra



If  $o < \beta < 1$ , autocorrelation function follows:

$$r \propto 1/\tau^{1-\beta} \propto \tau^{-(1-\beta)}$$





Scale invariance; scale-free;

$$f(\lambda x) =_{d} \lambda^{H} f(x)$$

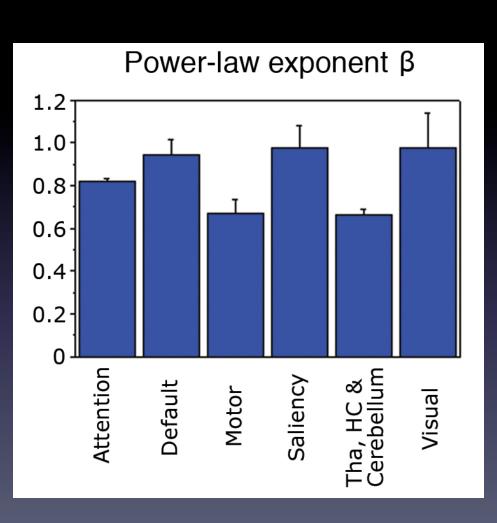
Temporal domain: Scale-free dynamics;
Spatial domain: Fractals

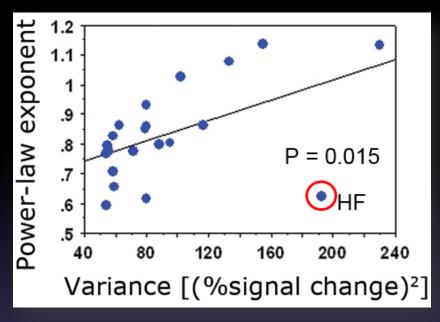


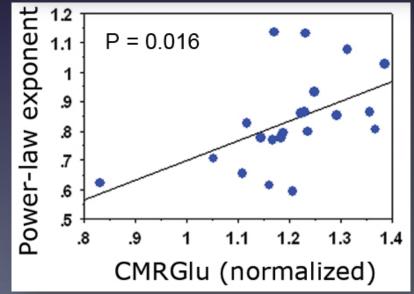
$$P(f) = Af^{-\beta}$$

Then 
$$P(\lambda f) = A(\lambda f)^{-\beta} = A\lambda^{-\beta} f^{-\beta} = \lambda^{-\beta} P(f)$$

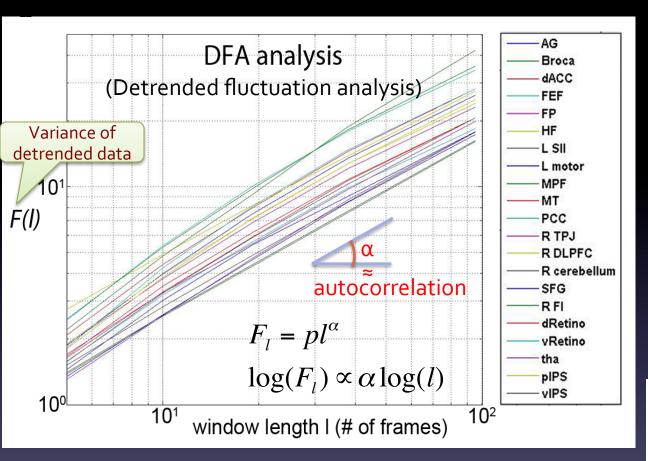
## Power-law exponent differentiates between brain networks and correlates with metabolism







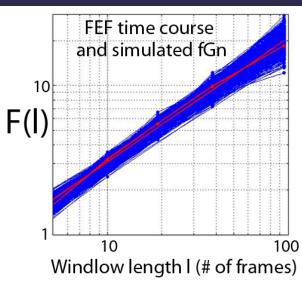
### Time-domain scaling analysis



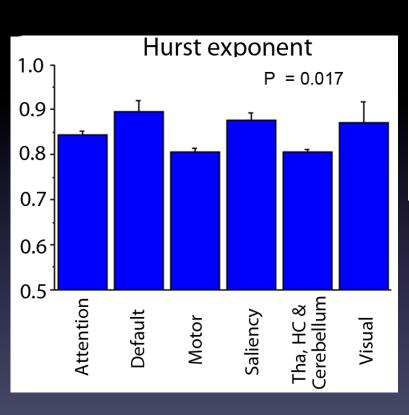
#### Scale-invariance:

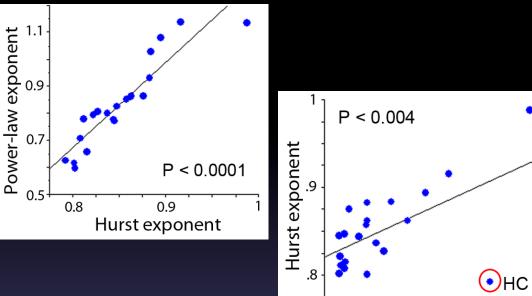
$$f(\lambda x) =_{d} \lambda^{H} f(x)$$
If  $\alpha < 1$ ,
Hurst exponent
$$H = \alpha;$$

#### Goodness-of-fit test



### Hurst exponent reproduces results from power-law exponent

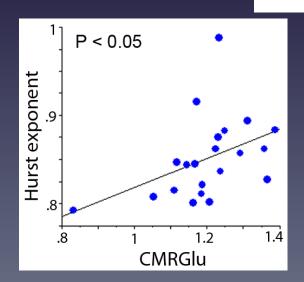




40

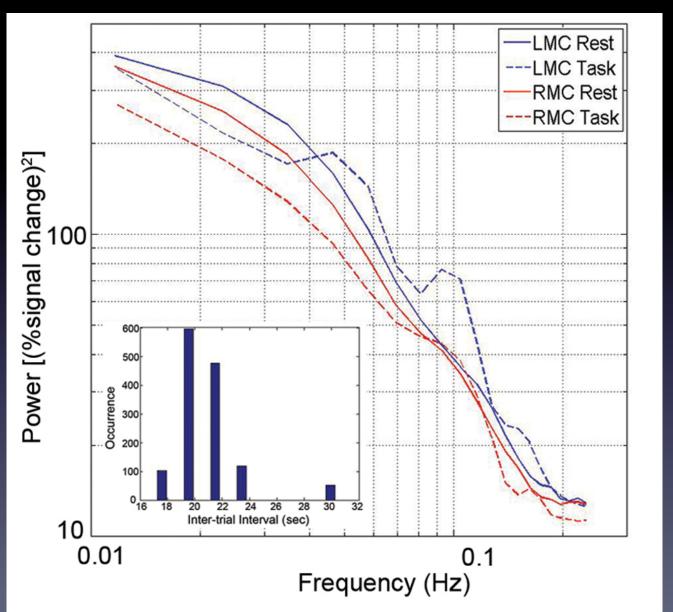
120

Variance

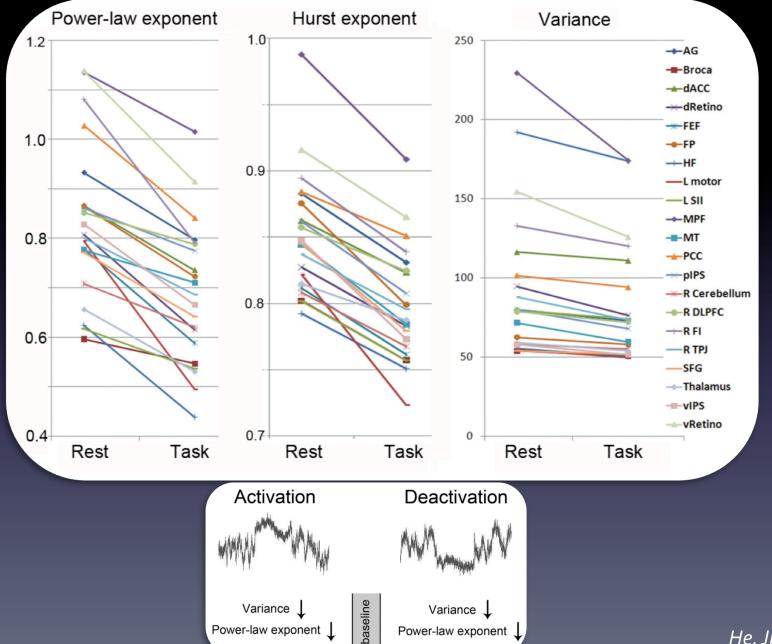


200

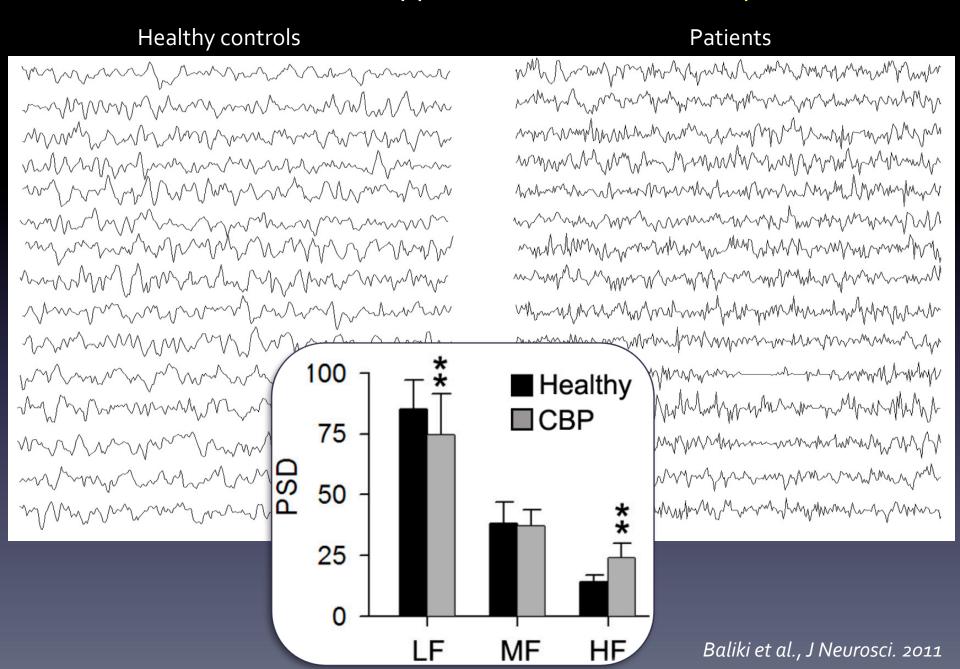
### Power-law exponent decreases during task



### Widespread changes in scaling behavior during task



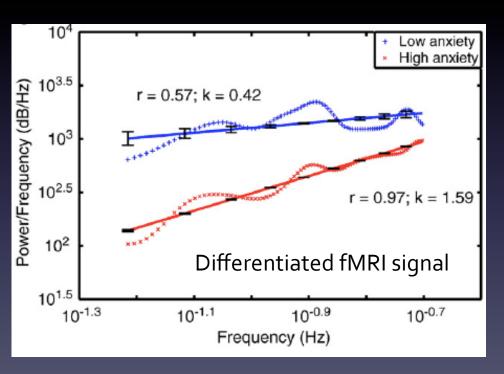
#### Potential clinical applications - Chronic back pain



### Potential clinical applications

#### Trait anxiety

Smaller H → higher anxiety
Brain being constantly activated?

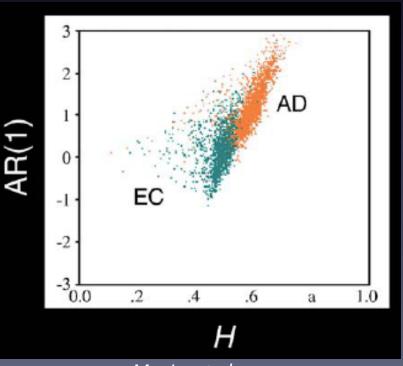


Tulkonov et al., 2010

#### Alzheimer's Disease

Larger H – AD Not as efficient in online information processing?





Maxim et al., 2005

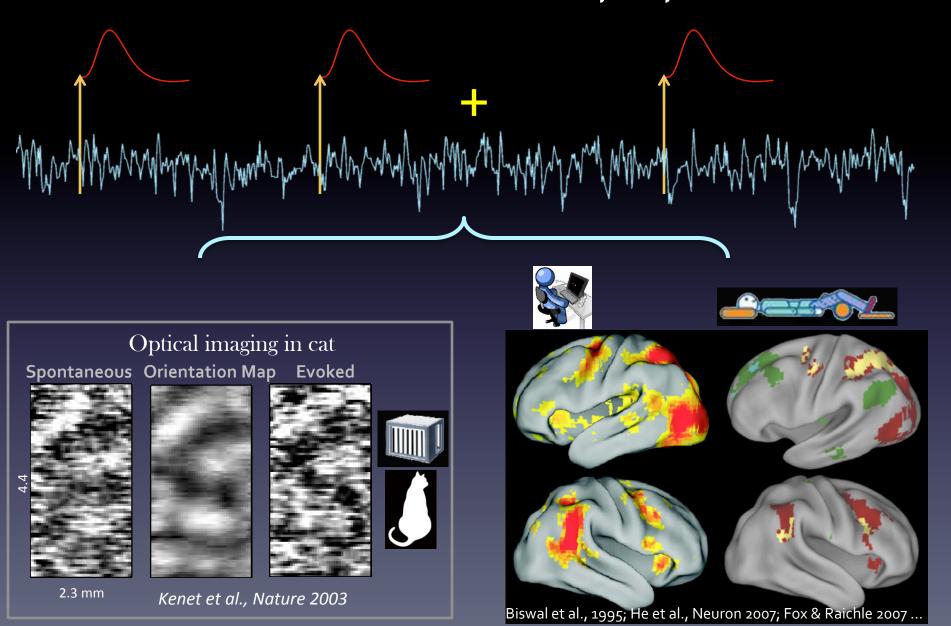
# Interim Summary

- 2<sup>nd</sup>-order statistics of fMRI signal (variance; power-law exponent; autocorrelation)
  - Differentiates between brain networks
  - Correlates with brain metabolism
  - Reduced variance and temporal memory/redundancy during task performance
  - Mean-and-variance stationary; contains an optimal dynamic range

## Talk Outline

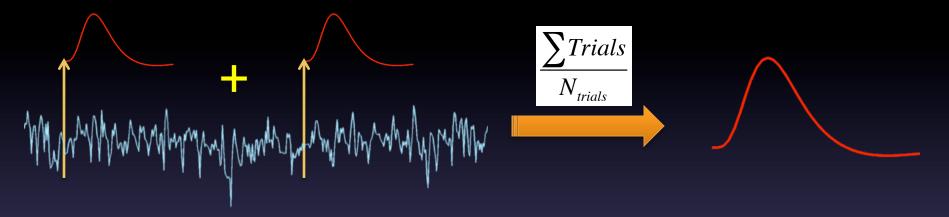
- 2<sup>nd</sup>-order statistics of fMRI signal
- The relation between ongoing and evoked activity
  - How to assess
  - An example of overwhelming negative interaction in fMRI
- Trajectory-based processing
  - A more parsimonious and realistic model
- Similar observations in electrophysiology
- Potential clinical applications

## Signal + Noise (Linear Superposition)

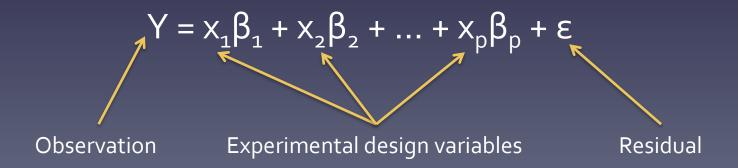


## Signal + Noise (Linear Superposition)

#### Trial-averaging:

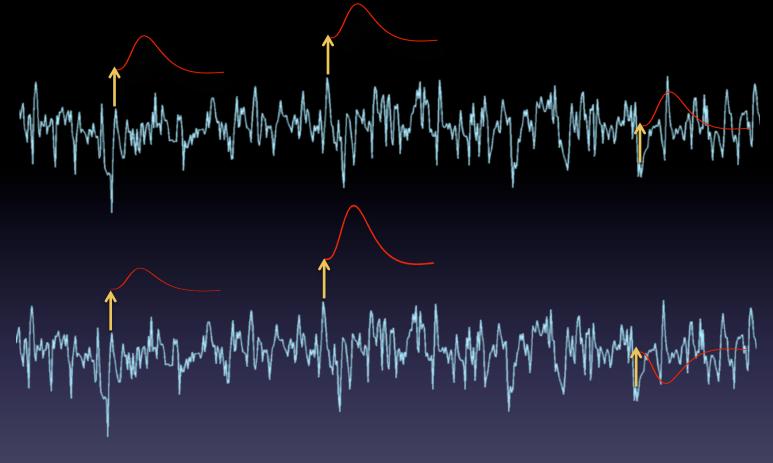


#### **General Linear Model:**



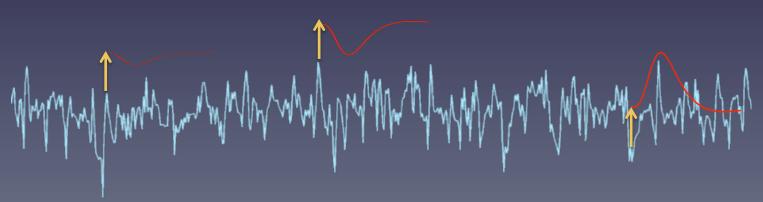
### What if linear superposition is not correct?

i) Linear Superposition



ii) PositiveInteraction





### The literature is conflicted!

#### Supporting linear superposition:

Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses

Amos Arieli, Alexander Sterkin, Amiram Grinvald, Ad Aertsen\*

Science 1996

"In spite of the large variability, evoked responses in single trials could be predicted by linear summation of the deterministic response and the preceding ongoing activity."

Voltage-sensitive dye in anesthetized cats (visual cortex)

Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses

Michael D Fox<sup>1</sup>, Abraham Z Snyder<sup>1,2</sup>, Jeffrey M Zacks<sup>1,3</sup> & Marcus E Raichle<sup>1,2,4,5</sup>

Nature Neuroscience, 2006

fMRI in human subjects watching movies

"coherent spontaneous fluctuations in human brain activity account for a significant fraction of the variability in measured event-related BOLD responses... spontaneous and task-related activity are linearly superimposed in the human brain."

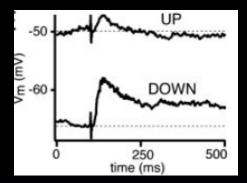
#### Not squaring so well with linear superposition...

## Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex

Carl C. H. Petersen\*†‡, Thomas T. G. Hahn\*, Mayank Mehta<sup>§¶</sup>, Amiram Grinvald<sup>∥</sup>, and Bert Sakmann\*

PNAS, 2003

Voltage-sensitive dye in anesthetized and awake rats (barrel cortex)



"Surprisingly, unlike in the anesthetized cat... here we find that both sensory-evoked postsynaptic potentials (PSPs) and sensory-evoked action potentials (APs) are suppressed by (higher) ongoing spontaneous activity."

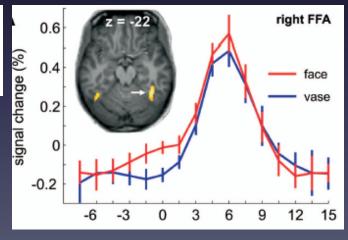
## Spontaneous local variations in ongoing neural activity bias perceptual decisions

Guido Hesselmann<sup>†‡§¶</sup>, Christian A. Kell<sup>∥</sup>, Evelyn Eger<sup>†‡§</sup>, and Andreas Kleinschmidt<sup>†‡§</sup>

PNAS, 2008



fMRI in human subjects performing a task



"That the difference in activity between vase and faces trials changes over peristimulus time is consistent with a modulation of evoked responses by preceding levels of baseline activity and suggests an interaction between baseline activity and the evoked response."

## Testing linear-superposition



Y: Task-evoked activity

X+Y: Recorded signal

Linear Superposition:  $r_{X,Y} = o$ ; Stereotypical task-evoked activity:  $\sigma^2_Y = o$ .

## One observable, two unknowns!!!

The law of variance sum:

$$\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y + 2r_{X,Y} \sigma_X \sigma_Y$$

$$\sigma_{X+Y}^2 = \sigma_X^2 + \sigma_Y^2 + 2r_{X,Y} \sigma_X \sigma_Y$$
Recorded Ongoing Evoked (under task)

• Linear Superposition:  $r_{XY} = 0$ 

$$\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y$$

$$\sigma^2_{X+Y} \ge \sigma^2_X$$

- Prediction:  $\sigma^2_{X+Y} \ge \sigma^2_X$  (equal sign in the limit of  $\sigma^2_Y = 0$ )

Positive Interaction: r<sub>x,y</sub> > c

$$\sigma^2_{X+Y} \geq \sigma^2_X$$

- Prediction:  $\sigma^2_{X+Y} \ge \sigma^2_X$  (equal sign in the limit of  $\sigma^2_Y = 0$ )

Negative Interaction: r<sub>X,Y</sub> < o</li>

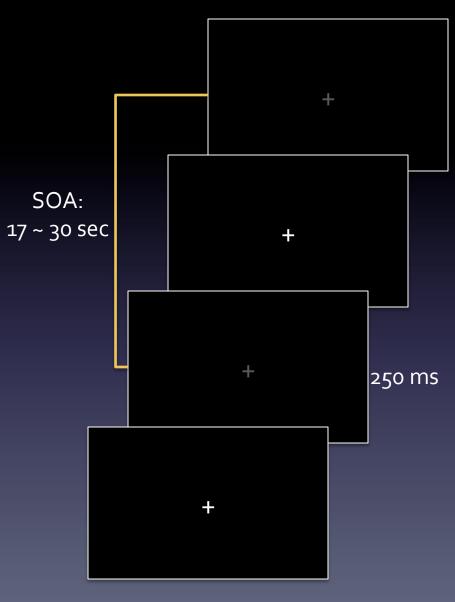
– Prediction:

$$\sigma_{X+Y}^2 > \sigma_{X}^2$$
 if  $-\sigma_Y/2\sigma_X < r_{X,Y} < \sigma_Y$ 

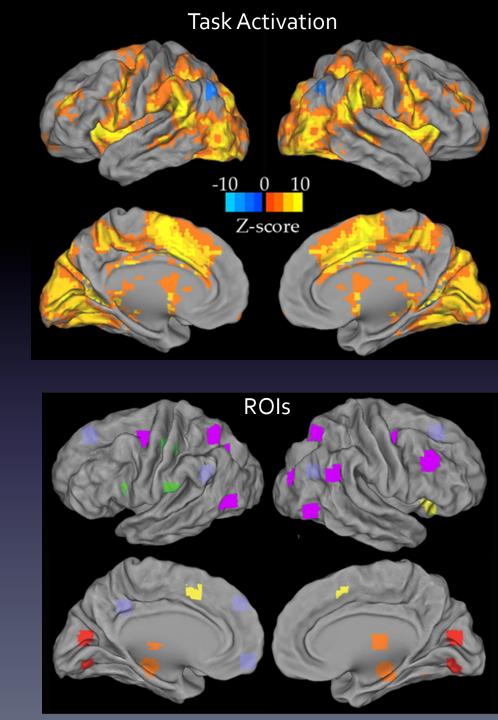
$$\sigma^2_{X+Y} < \sigma^2_{X}$$
, if  $r_{X,Y} < -\sigma_Y/2\sigma_X < \sigma_Y$ 

$$\sigma^2_{X+Y} = \sigma^2_{X,Y}$$
 if  $r_{X,Y} = -\sigma_Y/2\sigma_X$ 

## Task Design

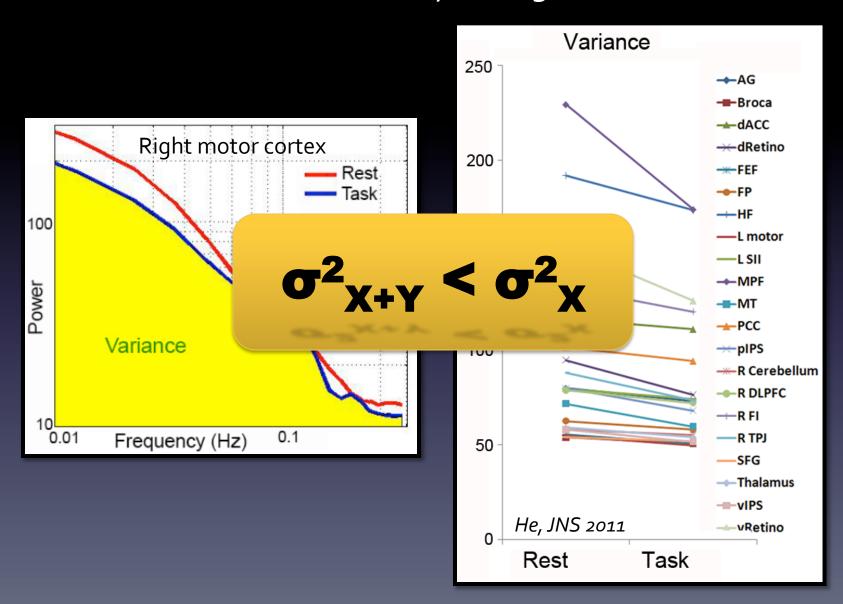


Fox et al., Neuron 2007; He et al., Neuron 2010



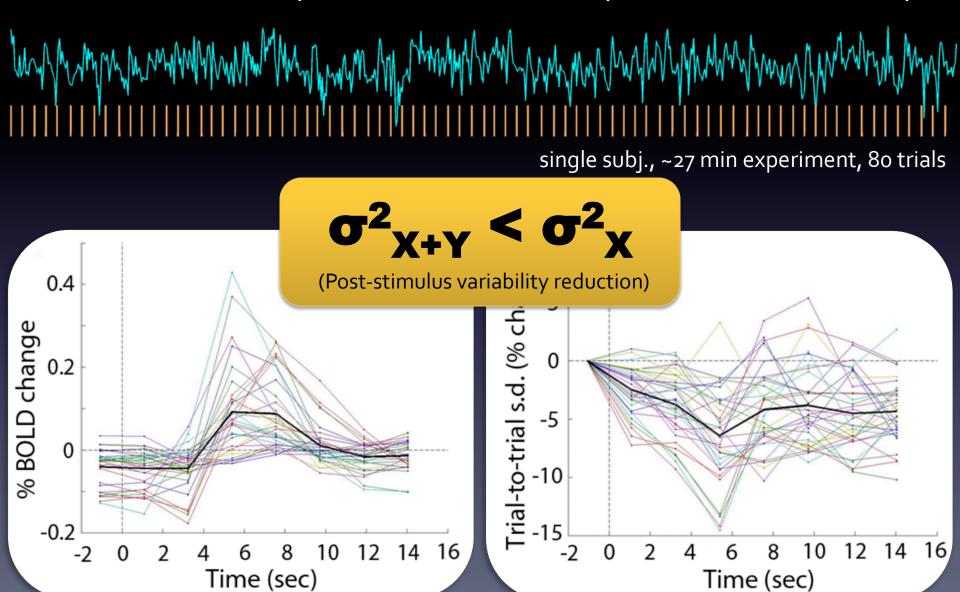
### $\sigma^2_{X+Y}$ VS. $\sigma^2_{X}$

Test 1: Variance of brain activity during task (X+Y) vs. rest (X)

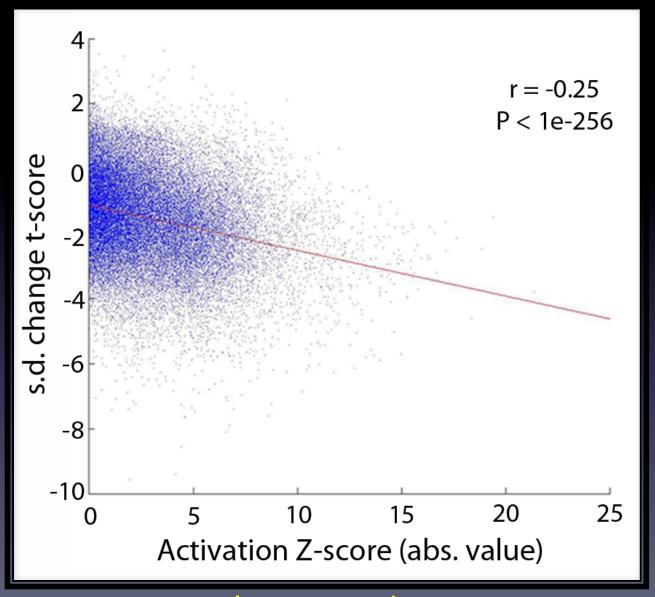


### $\sigma^2_{X+Y}$ VS. $\sigma^2_{X}$

Test 2: Variance of post-stimulus (X+Y) vs. pre-stimulus (X) activity

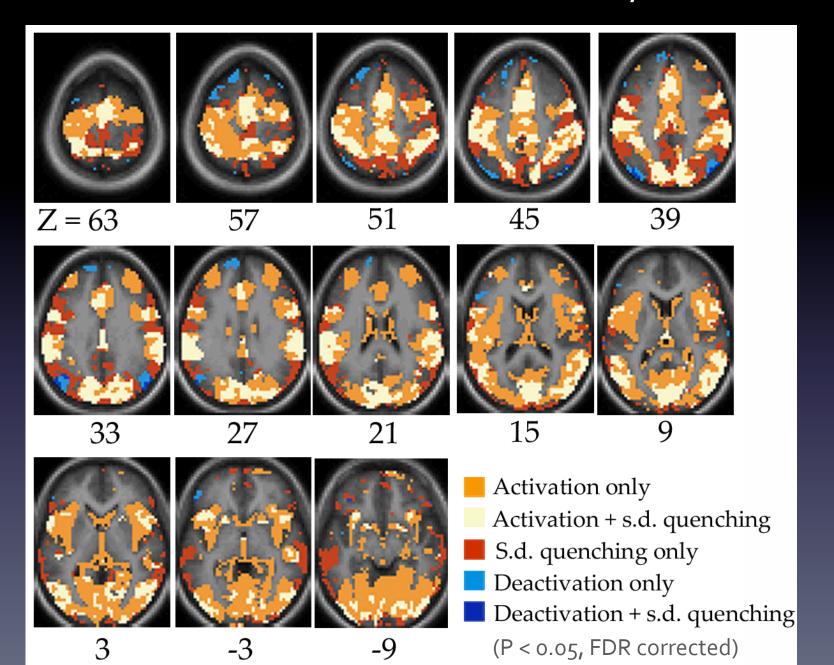


### Whole-brain voxel-wise analysis

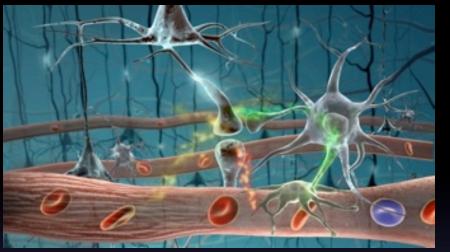


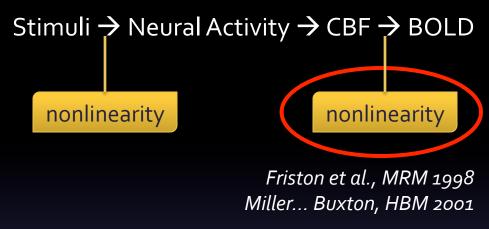
Trial-averaged Activity

### Whole-brain voxel-wise analysis

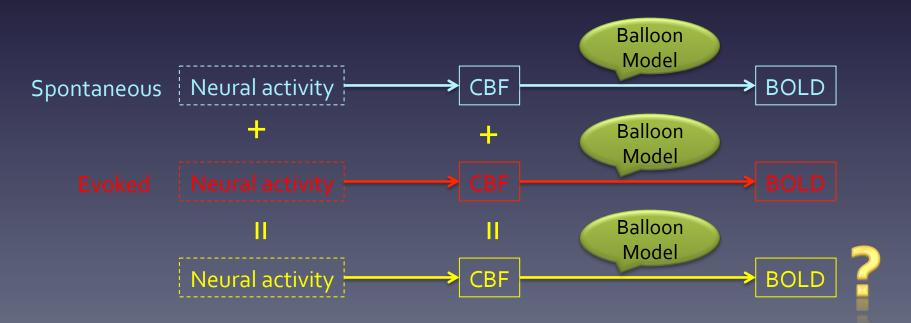


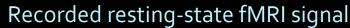
## Could it all be hemodynamic?



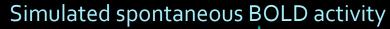


How to test? Assuming linear-superposition in the neural activity, can hemodynamic response introduce variability reduction?





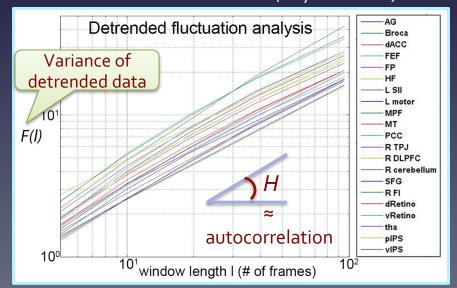




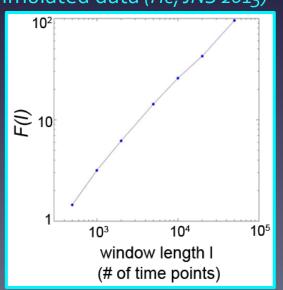


|            | Range (% change) | SD (% change) | Hurst exponent H |
|------------|------------------|---------------|------------------|
| Empirical  | 30.1             | 4.45          | 0.84             |
| Simulation | 30.9             | 4.41          | 0.83             |

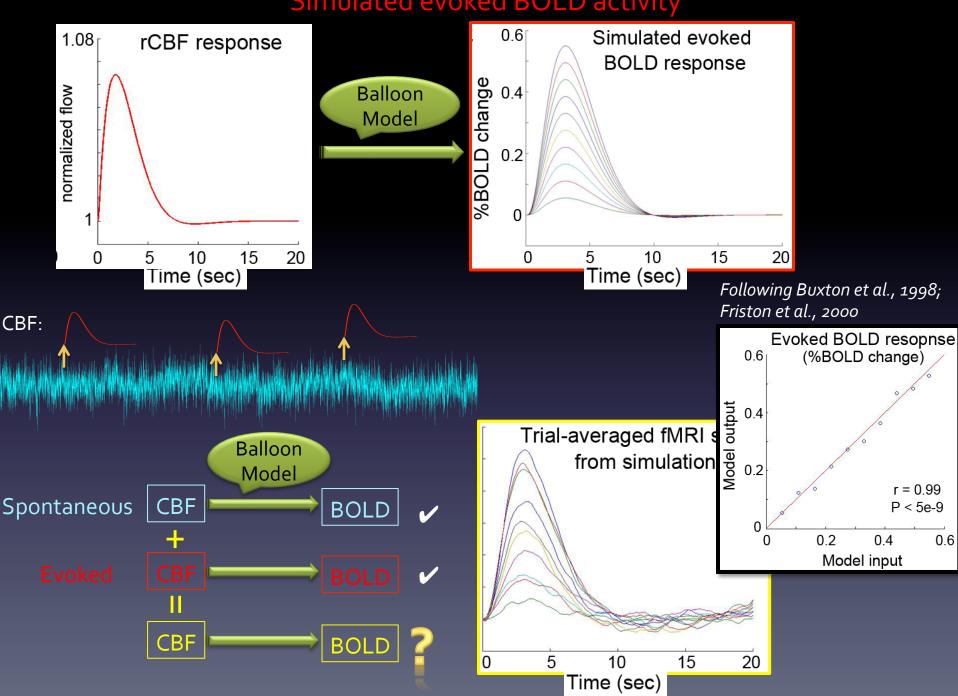
#### Recorded fMRI data (He, JNS 2011)



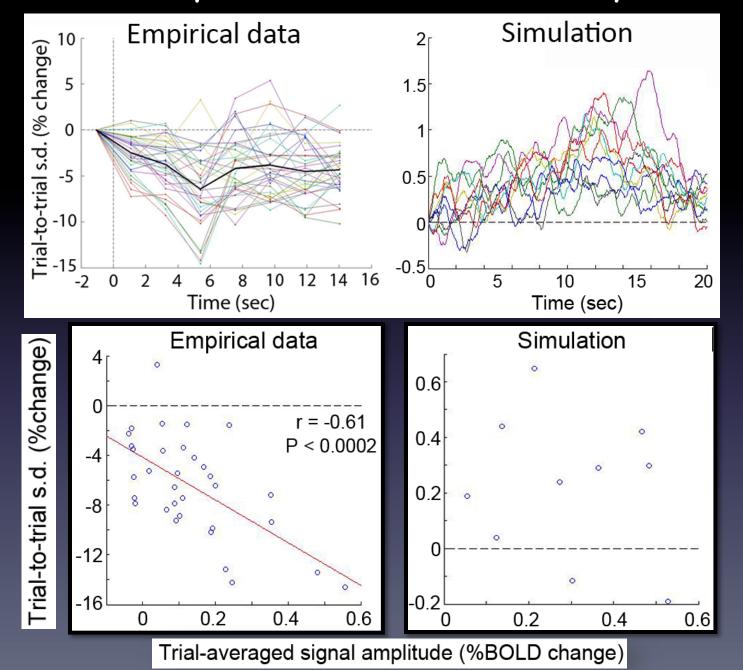
#### Simulated data (He, JNS 2013)



#### Simulated evoked BOLD activity



### HRF nonlinearity cannot cause variability reduction



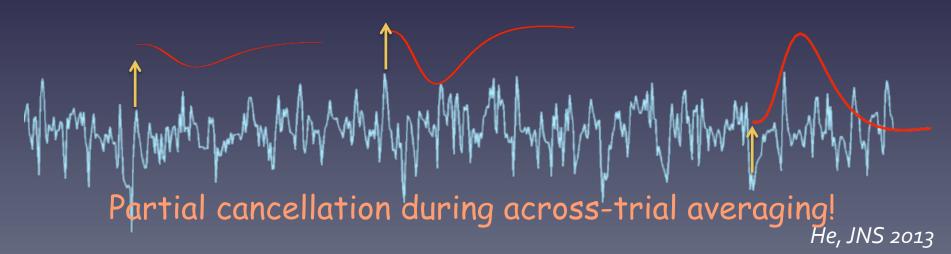
## Interim Summary

#### Observations:

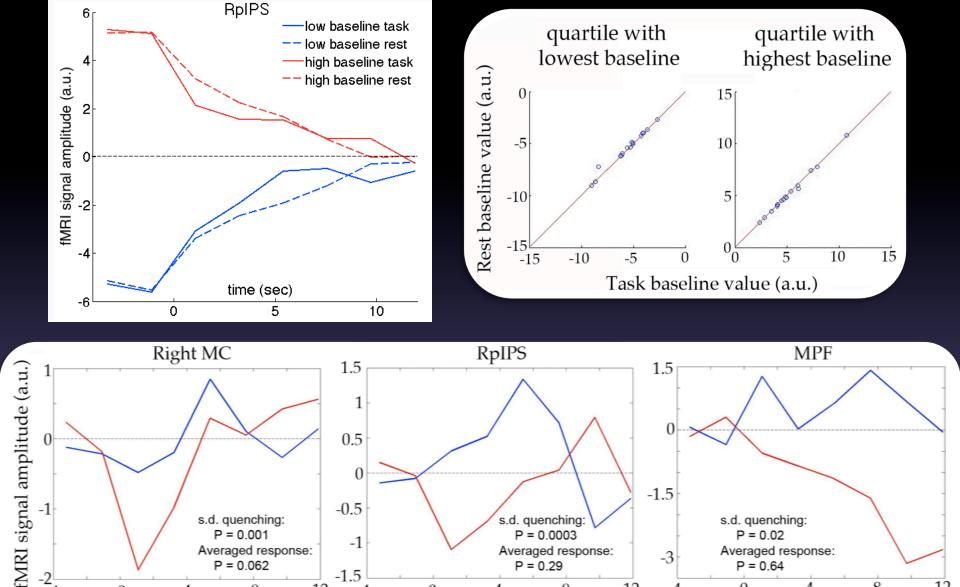
- ➤ Temporal variance Task < Rest</p>
- Across-trial variability
  Post-stimulus < Pre-stimulus</p>

If we assume there exists separate ongoing and evoked activity and that ongoing activity is (mean- and variance-) stationary: **G**iven the Law of Variance Sum,

Ongoing and evoked activity must negatively interact.



## Partial cancellation during across-trial averaging

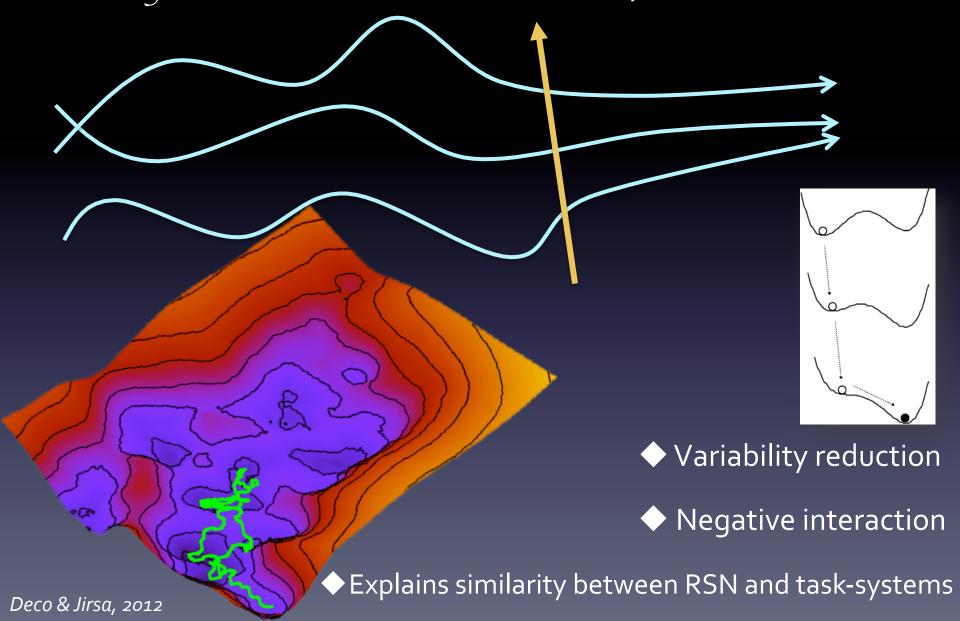


Time (sec)

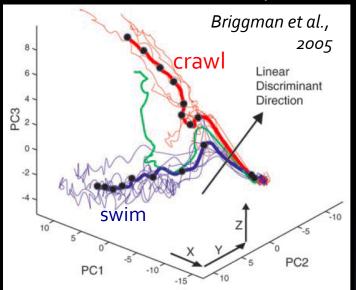
low baseline

high baseline

Is trajectory-based idea more parsimonious?



## Trajectory-based processing

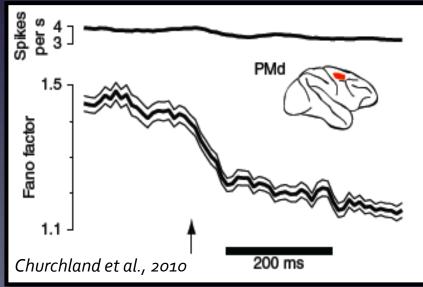


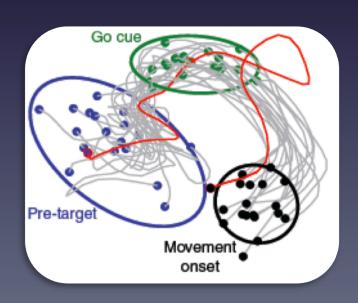
"... information is encoded in evolving neural trajectories. ... computation is in the voyage through state space as opposed to the destination."

"The response of a population of neurons in a network is determined not only by the characteristics of the external stimulus but also by the dynamic changes in the internal state of the network."

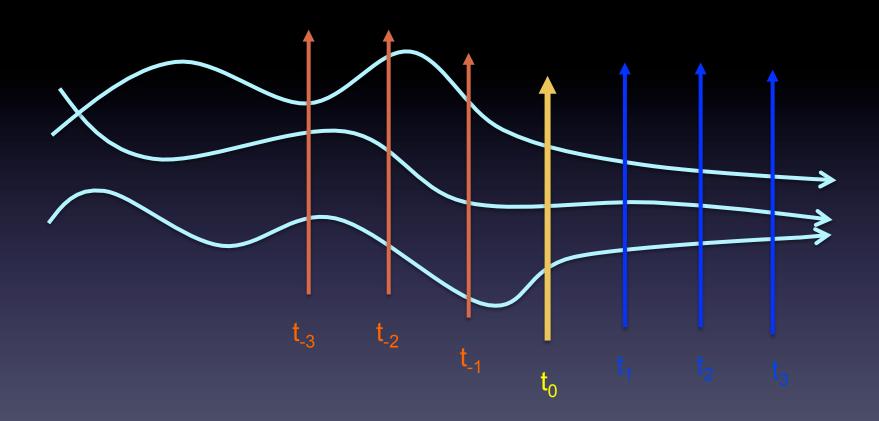
(Buonomano& Maass, 2009)

#### Neuronal firing in premotor cortex

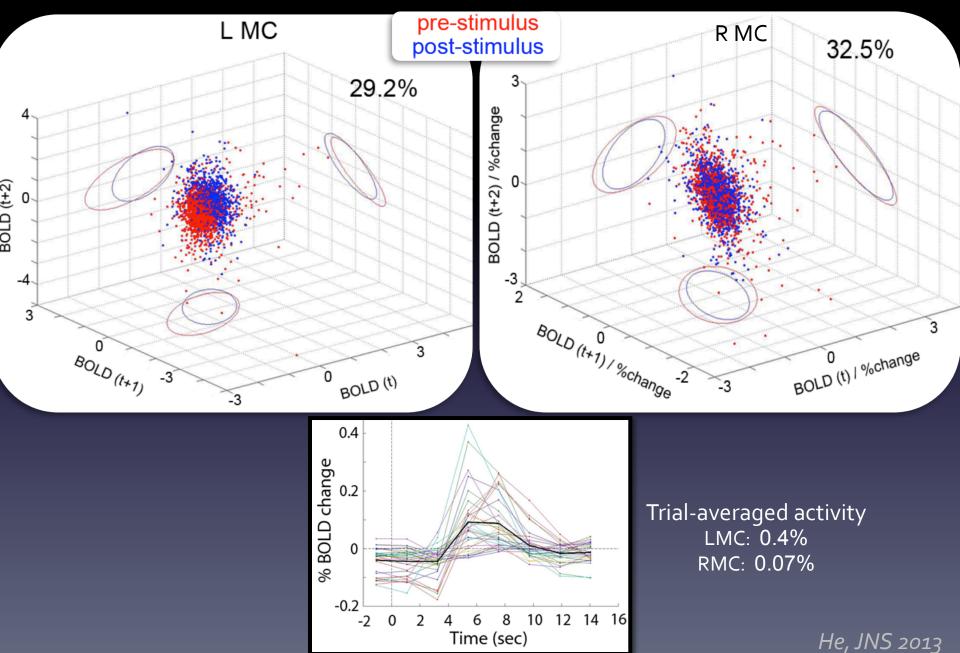




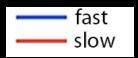
## Assessment of cortical state space

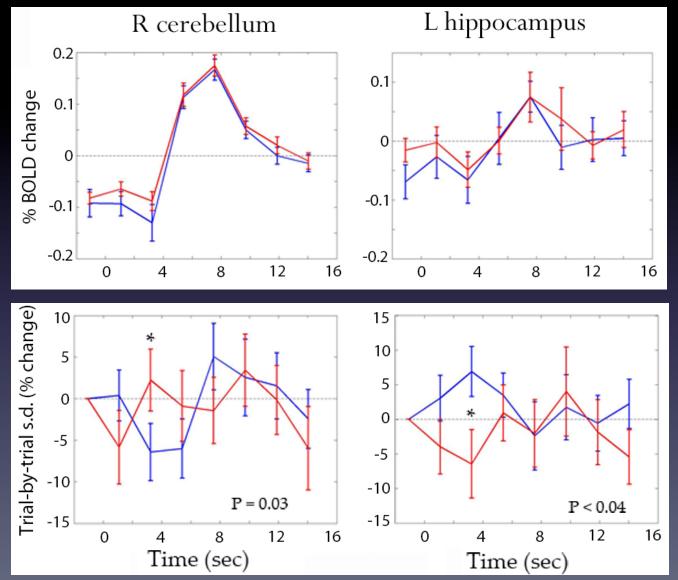


## Shrinking of cortical state-space



## Across-trial variability correlates with behavior



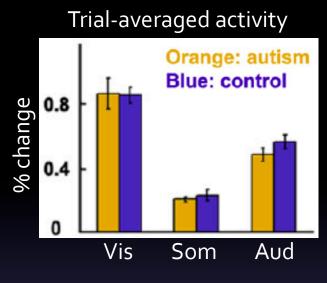


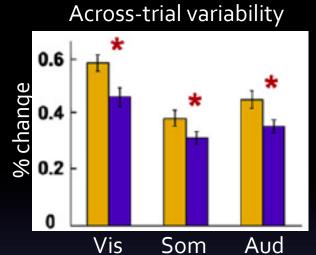
## Interim Summary

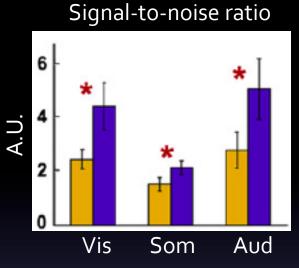
- Spatial patterns of across-trial variability and trial-averaged response are dissociable.
- Variability reduction contains behaviorally relevant information not present in trial-averaged response.
  - > Reevaluation of which brain regions are involved in which functions...
- Trajectory-based processing framework is more parsimonious and potentially closer to reality.
  - Q: How does the brain distinguish between ongoing and evoked activity?
- The brain processes incoming sensory stimuli in a strongly initialstate-dependent manner.

### <u>Autism</u>

### Potential clinical applications - variability







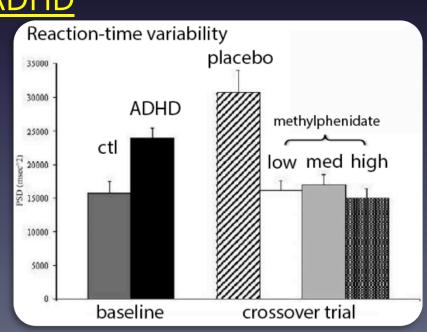
Dinstein et al., 2012 (fMRI)

Castellanos et al., 2005

Schizophrenia <u>ADHD</u>

Winterer et al., 2000 (EEG)

signal-to-noise ratio



## Overal conclusions

- Prevalent variability reduction observed in fMRI and ECoG data under a simple visual detection task contradicts the widely assumed "linear superposition" model.
- If we assume that ongoing and evoked activity sum to give rise to the recorded brain signal, then they must negatively interact to produce variability reduction.
- An alternative and more parsimonious framework is that cortical activity trajectory carries information processing in itself; and that the distinction between ongoing and evoked activity under task context is artificial.
- Variability reduction contains behaviorally relevant information not present in trial-averaged response, opening up a new avenue for cognitive and clinical neuroscience.



#### Present:

- Brian Maniscalco, Ph.D.
- Alex Baria, Ph.D.
- Raymond Chang
- Amy Lin

#### Past:

- Zak Hill (Univ. of Washington)
- Qi Li, Ph.D. (NIMH)
- Dan Arteaga (Vanderbilt Univ.)
- Megan Wang (Stanford Univ.)

NATIONAL INSTITUTE OF NEUROLOGICAL Disorders and Stroke

- NIH MRI facility
- NIMH MEG core facility

#### **Collaborators:**

- Eric Wasserman (NIH)
- Mark Hallett (NIH)
- Xiao-Jing Wang (NYU)
- Rishidev Chaudhuri (NYU)
- Patrice Abry (ENS, Lyon)
- Philippe Ciuciu (Neurospin, Paris)
- Gustavo Deco (Pompeu Fabra Univ.)
- Garrett Stanley (Georgia Tech)

#### Washington University:

- Marc Raichle
- John Zempel
- Avi Snyder
- Maurizio Corbetta

